# ASSOCIATION OF THE FUNCTIONAL *TGFB1* GENE VARIANTS WITH BONE LOSS AROUND FEMORAL COMPONENT IN TOTAL HIP ARTHROPLASTY

Mrazek F<sup>1</sup>, Gallo J<sup>2</sup>, Stahelova A<sup>1</sup>, Petrek M<sup>1</sup>



<sup>1</sup> Laboratory of Immunogenomics and Proteomics, Dept. of Immunology <sup>2</sup> Dept. of Orthopaedics Medical Faculty of Palacky University and University Hospital, Olomouc, Czech Republic.



## Background

## **Periprosthetic osteolysis**

**Periprosthetic osteolysis** (OL) is long-term complication of the total hip arthroplasty (THA) which can result in aseptic loosening and THA reoperation.

**Pathogenesis** of OL is **complex** – both biological and mechanical factors play an important role.

Subjects: 205 unrelated Czech patients with cementless type THA operated on at a single centre stratified according to the severity of femoral bone loss (osteolysis, Saleh's classification<sup>2</sup>) Group 1: minor defects (Saleh 1, N=94) Group 2: moderate defects (Saleh 2, N=77) Group 3: severe defects (Saleh 3-5, N=34)

Methods

Genotyping of cytokine / cytokine receptor gene polymorphisms
- 22 selected cytokine gene polymorphisms (Table 1)

Wear particles liberated from the prosthetic surfaces stimulate an inflammatory tissue response leading to osteolysis.

Substantial **interindividual variability** observed in the severity of OL suggests contribution of **genetic factors**.

# **Cytokines & Osteolysis**

Cytokines are implicated both in inflammatory response and bone resorption pathway.

**Production and regulation** of cytokines is affected by particular variants of cytokine genes.

We have previously shown that particular cytokine gene variants are associated with severe acetabular osteolysis and premature failure of THA<sup>1</sup>.

<sup>1</sup>Gallo et al. BMC Med Genet. 2009;10:109

- Polymerase Chain Reaction with Sequence Specific Primers (PCR-SSP)

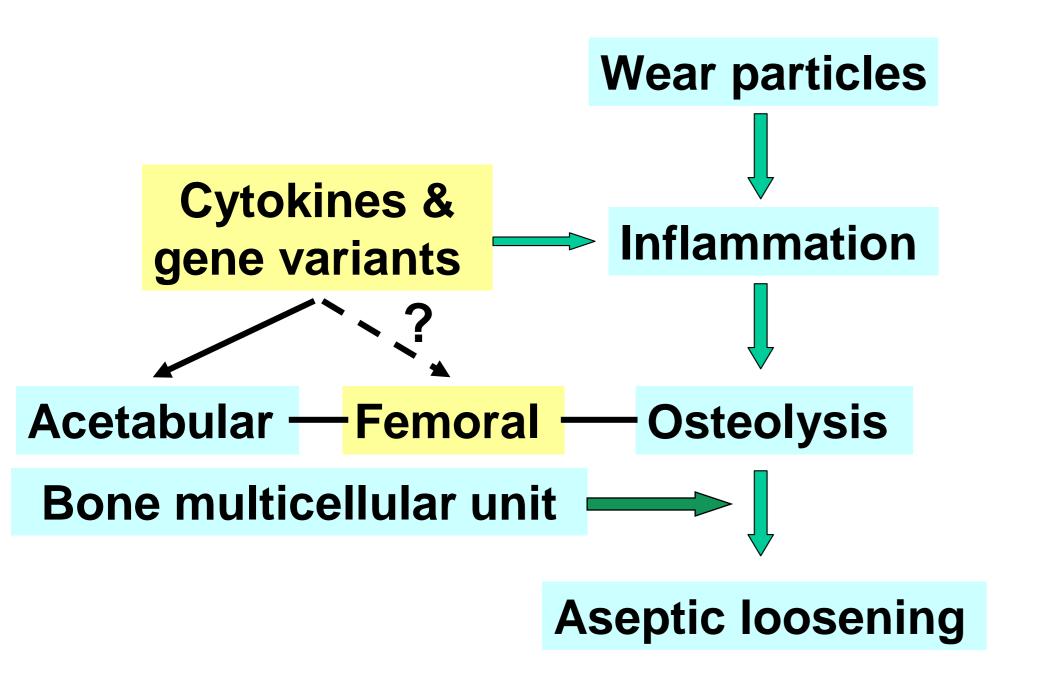
- "The Cytokine Typing Tray kit", University of Heidelberg

## 3. Statistics

- conformity of the distribution of genotypes to the Hardy-Weinberg equilibrium

- differences between allelic, genotype and phenotype ("carriage rate") frequencies: Chi-square test

#### Table 1


List of investigated cytokine/ cytokine receptor SNPs with their gene location, NCBI reference SNP cluster report (refSNP), and function/location

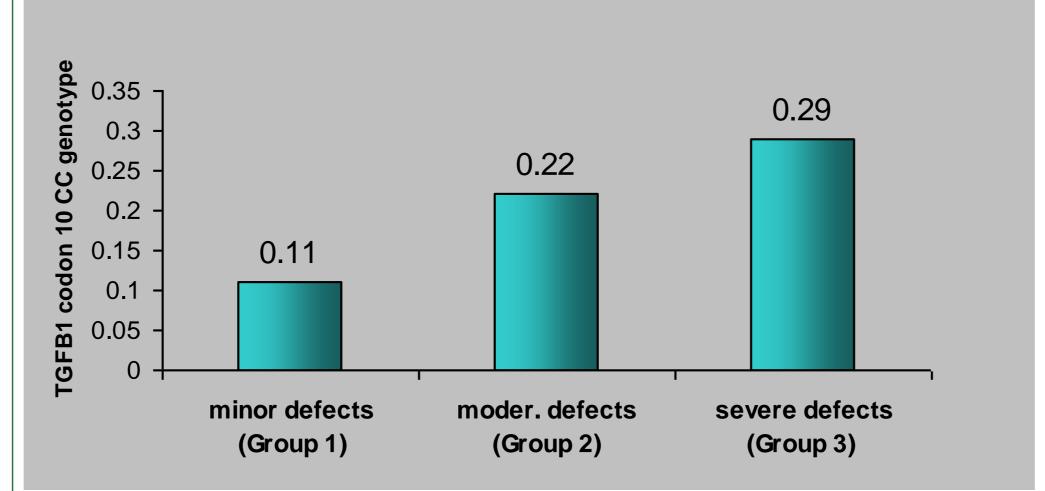
Note: The frequency of less common (minor) allele for each SNP is given for patients with THA (N=205) and for the population sample of the Czech healthy subjects (N=150)

<sup>2</sup>Saleh et al. J Bone Joint Surg Am. 2001;83-A(7):1040-6

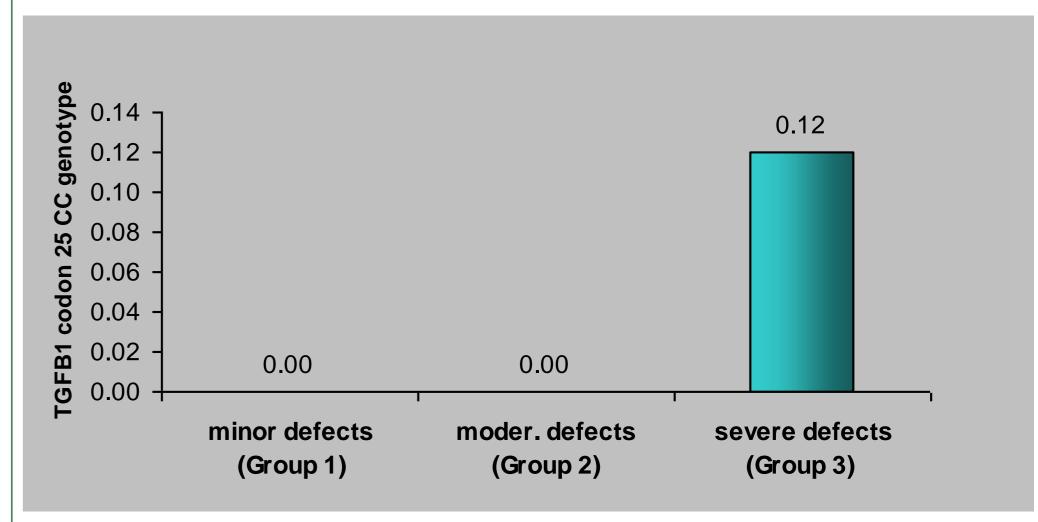
| Cytokine      | Gene<br>loc. | SNP<br>designation | Ref.SNP   | Function/ location  | Allele | Allele frequency |            |
|---------------|--------------|--------------------|-----------|---------------------|--------|------------------|------------|
| /<br>Receptor |              |                    |           |                     |        |                  |            |
|               |              |                    |           |                     |        | ТНА              | Czech ref. |
| IL-1α         | 2q           | -889 T/C           | rs1800587 | 5´UTR               | Т      | 0.30             | 0.30       |
| IL-1β         | 2q           | -511 C/T           | rs16944   | promoter            | Т      | 0.30             | 0.33       |
| IL-1β         | 2q           | +3962 T/C          | rs1143634 | coding / synonymous | Т      | 0.24             | 0.23       |
| IL-1R         | 2q           | pst1 1970 C/T      | rs2234650 | distal promoter     | Т      | 0.33             | 0.34       |
| IL-1RA        | 2q           | mspa1 11100<br>T/C | rs315952  | coding / synonymous | С      | 0.34             | 0.30       |
| IL-4Ra        | 16p          | +1902 G/A          | rs1801275 | coding / missense   | G      | 0.19             | 0.20       |
| IL-12         | 5q           | -1188 A/C          | rs3212227 | 3′UTR               | С      | 0.21             | 0.23       |
| IFNγ          | 12q          | +874 A/T           | rs2430561 | intron              | Т      | 0.47             | 0.49       |
| TGFβ          | 19q          | Codon 10 T/C       | rs1800470 | coding / missense   | С      | 0.42             | 0.47       |
| TGFβ          | 19q          | Codon 25 G/C       | rs1800471 | coding / missense   | С      | 0.08             | 0.08       |
| TNF-α         | 6р           | -308 G/A           | rs1800629 | promoter            | A      | 0.15             | 0.18       |
| TNF-α         | 6р           | -238 G/A           | rs361525  | promoter            | A      | 0.04             | 0.04       |
| IL-2          | 4q           | -330 T/G           | rs2069762 | promoter            | G      | 0.33             | 0.31       |
| IL-2          | 4q           | +166 G/T           | rs2069763 | coding / synonymous | Т      | 0.35             | 0.35       |
| IL-4          | 5q           | -1098 T/G          | rs2243248 | promoter            | G      | 0.06             | 0.06       |
| IL-4          | 5q           | -590 C/T           | rs2243250 | promoter            | Т      | 0.20             | 0.16       |
| IL-4          | 5q           | -33 C/T            | rs2070874 | 5´UTR               | Т      | 0.19             | 0.17       |
| IL-6          | 7р           | -174 G/C           | rs1800795 | promoter            | С      | 0.44             | 0.42       |
| IL-6          | 7р           | nt 565 G/A         | rs1800797 | promoter            | А      | 0.42             | 0.42       |
| IL-10         | 1q           | -1082 A/G          | rs1800896 | promoter            | G      | 0.45             | 0.47       |
| IL-10         | 1q           | -819 C/T           | rs1800871 | promoter            | Т      | 0.24             | 0.23       |
| IL-10         | 1q           | -592 C/A           | rs1800872 | promoter            | Α      | 0.24             | 0.22       |

## Hypothesis and Objective




Is there any association between the polymorhic variants across a spectrum of genes for cytokines and cytokine receptors with extent of bone loss around the femoral component of THA ?

#### Results


Out of investigated cytokine gene variants, the proportion of **transforming growth factor, beta 1** (*TGFB1*) **gene codon 10** (rs1800470) **CC homozygotes increased with the severity of femoral bone defects** (Group 1: 11%, Group 2: 22%, Group 3: 29%, p=0.03; Group 3 *versus* Group 1, p=0.01, OR=3.5, 95% CI: 1.3-9.3; **Figure 1**).

Importantly, the rare *TGFB1* codon 25 (rs1800471) CC homozygotes were observed only in the group of patients with severe defects (Group 3, 12%) but not within the groups of patients with moderate or minor defects (p<0.001, Figure 2).

**Figure 1:** Proportion of *TGFB1* codon 10 CC homozygotes in the subgroups of THA patients according to the severity of femoral bone loss (osteolysis)



**Figure 2:** Proportion of rare *TGFB1* codon 25 CC homozygotes in the subgroups of THA patients according to the severity of femoral bone loss (osteolysis)



Overall value for three groups: *p* = 0.03 Group 3 *versus* Group 1, p=0.01, OR=3.5, 95% CI: 1.3-9.3

#### **Conclusion and Discussion**

In conclusion, functional variants of the TGFB1 gene may confer susceptibility to severe femoral bone defects after THA in a recessive model.

We could speculate that observed association of TGFB1 variants may be related to the dysregulation of inflammation in response to wear particles and/or insufficiency of bone forming processes around the femoral component of the prosthesis.

Our results may be limited by the small numbers of *TGB1* uncommon homozygotes (namely *TGFB1* codon 25 CC); replication of this study in independent THA cohorts is, therefore, warranted. Further data on the role of TGFbeta and its gene variants in the pathogenesis of osteolysis are desirable as well.

Grant support: MSM 6198959205, IGA MHCR NR9490-3, NS/10260-3 and IGA UP project no. LF\_2010\_008, CZECH REPUBLIC